Describing upper body motions based on the Labanotation for learning-from-observation robots
نویسندگان
چکیده
— We have been developing a paradigm, which we refer to as Learning-from-observation, for a robot to automatically acquire what-to-do through observation of human performance. Since a simple mimicking method to repeat exact joint angles does not work due to the kinematic and dynamic difference between a human and a robot, the method introduces an intermediate symbolic representation, task models, to conceptually represent what-to-do through observation. Then, these task models are mapped appropriate robot motions depending on each robot hardware. This paper presents task models, designed based on the Labanotation, for upper body movements of humanoid robots. Given a human motion sequence, we first analyze the motions of the upper body, and extract certain fixed poses at certain key frames. These key poses are translated into states represented by Labanotation symbols. Then, task models, identified from the state transitions, are mapped to robot movements on a particular robot hardware. Since the task models based on Labanotation are independent from different robot hardware, we can share the same observation module; we only need task mapping modules depending on different robot hardware. The system was implemented and demonstrated that three different robots can automatically mimic human upper body motions with satisfactory level of resemblance.
منابع مشابه
Dynamics of Space Free-Flying Robots with Flexible Appendages
A Space Free-Flying Robot (SFFR) includes an actuated base equipped with one or more manipulators to perform on-orbit missions. Distinct from fixed-based manipulators, the spacecraft (base) of a SFFR responds to dynamic reaction forces due to manipulator motions. In order to control such a system, it is essential to consider the dynamic coupling between the manipulators and the base. Explicit d...
متن کاملUsing BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
متن کاملAutomatic Labanotation Generation Based on Human Motion Capture Data
As a kind of dance notation, Labanotation has been adopted extensively as an analysis and record system for performing dances. This article aims to generate Labanotation automatically from human motion capture data stored in BVH (Bio-vision Hierarchy) files. First, we convert motion capture data into position format. Then we analyze motions separately according to whether the motion belongs to ...
متن کاملForward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning
The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...
متن کاملCooperative Control of Mobile Robots in Creating a Runway Platform for Quadrotor Landing
Multi-agent systems are systems in which several agents accomplish a mission in a cooperative manner. In this paper, a novel idea for the construction of a movable runway platform based on multi-agent systems is presented. It is assumed that an aerial agent (quadrotor) decides to make an emergency landing due to reasons such as a decrease in energy level or technical failure, while there is no ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1609.05429 شماره
صفحات -
تاریخ انتشار 2016